Preparation of Bridgehead Substituted Bicyclo[3.3.0]octane Derivatives by the BF3•OEt2-Catalyzed Rearrangement of Bicyclo[3.2.1]oct-6-en-8-ols

Yujiro HAYASHI, Hiroyuki USHIO, and Koichi NARASAKA
Department of Chemistry, Graduate School of Science, The University of Tokyo,
7-3-1, Hongo, Bunkyo-ku, Tokyo 113

6-*t*-Butyldimethylsilyl-7-methylthiobicyclo[3.2.1]oct-6-en-8-ol derivatives prepared from the [2+2] cycloadducts of 1-*t*-butyldimethylsilyl-2-methylthioacetylene and 2-cyclohexenones are rearranged by the treatment with BF3•OEt2 into two types of bicyclo-[3.3.0]octane compounds, bicyclo[3.3.0]oct-3-en-2-one or 2-methylenebicyclo[3.3.0]oct-3-ene derivatives selectively, depending on the substituent at C-1 position.

By the use of Lewis acid, [2+2] cycloaddition reaction between alkenyl and alkynyl sulfides with electron deficient olefins proceeds smoothly giving cyclobutane and cyclobutene derivatives.¹⁾ In the previous paper,²⁾ we reported that bicyclo[4.2.0]octenone derivatives **1** prepared from the cycloadducts of 2-cyclohexenones and 1-*t*-butyldimethylsilyl-2-methylthioacetylene were readily rearranged to 6-*t*-butyldimethylsilyl-7-methylthiobicyclo[3.2.1]oct-6-en-8-one derivatives **2** by the EtAlCl₂-catalyzed Cargill rearrangement (Eq. 1). Since the bicyclo[3.2.1]octenones **2** thus can be readily available, the further transformation of **2** has been investigated by applying Lewis acid catalyzed Wagner-Meerwein rearrangement.³⁾

Various bicyclo[3.2.1]oct-6-en-8-ols 3 and the 1-methyl derivatives 5 were prepared by the reaction of the bicyclic octenones 2 with organo lithium and magnesium compounds (Eq. 1), 4) and the rearrangement of 3 and 5 was examined by the use of acid catalysts. After screening the reaction conditions, BF3•OEt2 was found to catalyze the rearrangement⁵) and two types of bicyclo[3.3.0]octenes were obtained, depending on the substituent at C-1 position (R¹ group in the compounds 3 and 5). For example, when 6-t-butyldimethylsilyl-7-methylthio-8-vinylbicyclo[3.2.1]oct-6-en-8-ol (3a) which has no substituent at C-1 position (R¹ = H) was treated with BF3•OEt2 for 10 min at rt in acetonitrile and then with CuCl2•2H2O and p-TsOH•H2O, 6) the rearranged product was obtained as a conjugate enone 4a in 92% yield (Eq. 2). On the other hand, the rearrangement of the 1-

methyl derivative **5a** (R¹= Me) proceeded in an alternative mode. The treatment of **5a** with BF3•OEt2 at rt in acetonitrile, followed by quenching with aq. NaHCO3, yielded a triene derivative **6a** in 83% yield without the rearranged product corresponding to the enone **4a** (Eq. 3).

In Tables 1 and 2 are listed the examples of the BF₃•OEt₂-catalyzed rearrangement of various bicyclo-[3.2.1]oct-6-en-8-ols **3** and **5**. The course of the rearrangement is completely governed by the substituent R¹ in bicyclo[3.2.1]octenol derivatives. The substrates **3** with hydrogen at C-1 position are rearranged to bicyclo-[3.3.0]oct-3-en-2-one derivatives **4** by the migration of the C4-C5 bond (Table 1), whereas the substrates **5** with methyl group at this position are rearranged to 2-methylenebicyclo[3.3.0]oct-3-ene derivatives **6** by the migration of the C1-C2 bond (Table 2).

Table 1. The BF_3 •OEt₂ catalyzed rearrangement of $3^{a)}$

Substrate 3	R^2	Product 4	Yield/%
HO R ²		₩ <i>Q</i>	
SMe		твѕ	
TBS		R ²	
3 a	CH=CH ₂	4 a	92
	_		89
3 b	Ме	4 b	
3 c	<i>n-</i> Bu	4 c	89
3 d	Ph	4 d	99
3 e	C≡CTBS	4 e	95
		H SM	Лe
3 f ^{b)}	CH ₂ COOCH ₃	4f +	-TBS 86 10
			4f'
		\mathcal{M}°	
		0	

a) The reaction was performed in the presence of BF₃•OEt₂ in 10 min in CH₃CN at rt and was quenched with CuCl₂•2H₂O and *p*-TsOH•H₂O, unless otherwise noted.

b) The reaction temperature was 82 °C.

Substrate 5	5 R ²	R ³	Product 6	Yield/%
HO R ²			A^{R^2}	
3 Ts	Me	R ³	SM TBS	е
	TBS		Н	
5 a	CH=CH ₂	Н	6 a	83
5 b	Ме	Н	6 b	67
5 c	CH=CH ₂	$C(Me)=CH_2$	6 c	quant.
5 d	C≡CTBS	$C(Me) = CH_2$	6 d	86

a)

The re cyclo-[3.2.1]octer ostrates having not only vinyl group 3a, 5a, 5c at C-8 position but also alkyl 3b, 3c, 5b, aryl 3d, alkynyl 3e, 5d, and methoxycarbonylmethyl 3f substituents. In the reaction of the secondary alcohol 7 (3, $R^2 = H$), however, the rearranged product was not

Methylsulfonyl compounds 8 and 9, the sulfonyl analogous of 3b and 5b, were found to be hardly rearranged under the same reaction conditions: The reaction of 8 did not occur at room temperature. The rearrangement of 9 proceeded very slowly to afford the rearranged product 10 in 9% yield after 90 h (Eq. 4). Accordingly, methylthio group accelerates the rearrangement. In the rearrangement of 3, the regioselective migration of the C4-C5 bond occurred by the generation of the cationic intermediates A (Eq. 2), while 1-methyl derivatives 5 are rearranged selectively to form the carbocations \mathbf{B} (Eq. 3).

obtained with the recovery of the starting material 7.

TBS

HO Me

Me

$$SO_2Me$$
 TBS
 $CH_3CN, rt, 90 h$
 H
 SO_2Me
 H
 TBS
 SO_2Me
 H
 SO_2

Although this-type of skeletal rearrangement has been observed in the solvolysis of bicyclo[3.2.1]octyl-8tosylates⁷⁾ and utilized in the biogenetic-like synthesis of hirsutene,⁸⁾ the synthetic utility of this rearrangement has not been revealed with a systematic study. By the present investigation, it was noted that the skeletal rearrangement occurs smoothly by employing the bicyclo[3.2.1]octenols 3 and 5 having methylthio group at C-7 position, affording the two kinds of bicyclo[3.3.0] octane derivatives which is one of the basic structures of many biologically active compounds.⁹⁾ Furthermore, various substituents are able to be introduced at the bridgehead position of bicyclo[3.3.0] octane skeleton by choosing organometallic compounds.

A typical experimental procedure is as follows (Table 1, 3a): To an acetonitrile solution (2.5 mL) of 3a (310 mg, 1.00 mmol) was added a dichloromethane solution (0.67 mL) of BF₃•OEt₂ (213 mg, 1.50 mmol) at room temperature under an argon atmosphere and the mixture was stirred for 10 min. The reaction was quenched by the addition of a mixture of CuCl₂•2H₂O (255 mg, 1.50 mmol), *p*-TsOH•H₂O (285 mg, 1.50 mmol), and 0.3 mL of H₂O. Then, after the addition of a pH 9 NH₃-NH₄Cl buffer solution, reaction products were extracted with dichloromethane and purified by TLC to afford the desired product 4a (271 mg, 92% yield).

This work was partially supported by the Takeda Science Foundation.

References

- Y. Hayashi and K. Narasaka, *Chem. Lett.*, **1989**, 793; **1990**, 1295; Y. Hayashi, S. Niihata, and K. Narasaka, *ibid.*, **1990**, 2091; K. Narasaka, Y. Hayashi, H. Shimadzu, and S. Niihata, *J. Am. Chem. Soc.*, **114**, 8869 (1992).
- 2) K. Narasaka, H. Shimadzu, and Y. Hayashi, Chem. Lett., 1993, 621.
- 3) Review, J. R. Hanson, "Wagner-Meerwein rearrangements," in "Comprehensive Organic Synthesis," ed by B. M. Trost et al., Pergamon Press, Oxford (1991), Vol. 3, p. 705.
- 4) For instance, 6-t-butyldimethylsilyl-7-methylthio-8-phenylbicyclo[3.2.1]oct-6-en-8-ol (**3d**) was prepared quantitatively as a single isomer by the reaction of phenyl lithium and 6-t-butyldimethylsilyl-7-methylthiobicyclo[3.2.1]oct-6-en-8-one (**2**, R¹ = H) at 0 °C. The stereochemistry of **3d** was determined as (1S*, 5R*, 8S*) by the analysis of NOESY spectrum which showed the indicated NOEs. The other alcohols **3a-c**, **3e-f** and **5a-d** were also obtained as a single isomer, and were assumed to have the same stereochemistry at C-8 position as that of **3d**.
- HO 1.3% H 0.9% SMe C(CH₃)₃ CH₃ NOE
- TiCl4 or EtAlCl2 did not promote the rearrangement and the starting material was recovered.
- 6) Without the treatment with CuCl2•2H2O and *p*-TsOH•H2O, 2,4-bis(methylthio)bicyclo[3.3.0]oct-2-ene derivative **4a'** was obtained in a substantial amount. As for the hydrolysis of vinyl sulfide with CuCl2, see; K. Narasaka, T. Sakashita, and T. Mukaiyama, *Bull. Chem. Soc. Jpn.*, **45**, 3721 (1972); K. Narasaka, T. Shibata, and Y. Hayashi, *ibid.*, **65**, 2825 (1992).
- H SMe TBS SMe
- 7) C. S. Foote and R. B. Woodward, *Tetrahedron*, **1964**, 687; J. W. Wilt, V. A. Curtis, L. N. Congson, and R. Palmer, *J. Org. Chem.*, **49**, 2937 (1984).
- 8) K. Hayano, Y. Ohfune, H. Shirahama, and T. Matsumoto, *Helv. Chim. Acta*, **64**, 1347 (1981); Y. Ohfune, H. Shirahama, and T. Matsumoto, *Tetrahedron Lett.*, **1976**, 2795.
- 9) Review, T. Hudlicky, F. Rulin, T. C. Lovelace, and J. W. Reed, "Synthesis of Natural Products Containing Five-membered Rings. An Evolution of General Methodology," in "Studies of Natural Products Chemistry," ed by Atta-ur-Rahman, Elsevier Science Publishers B. V., New York (1989), Vol. 3, p. 3; F. G. West, P. V. Fisher, and A. M. Arif, *J. Am. Chem. Soc.*, 115, 1595 (1993) and references cited therein. (Received October 27, 1993)